

Synthesis and Ag⁺-binding property of polyphenylacetylene with azacrown cavity by cyclopolymerization of 2,6-bis[7'-(4"-ethynylphenoxy)-2',5'-dioxaheptyl]pyridine

Toyoji Kakuchi*, Toshitaka Watanabe, Hiroyuki Kamimura and Shigeyuki Matsunami

Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060, Japan

and Kazuaki Yokota

Graduate School of Engineering, Hokkaido University, Sapporo 060, Japan (Received 13 November 1995; revised 4 December 1995)

The cyclopolymerization of 2,6-bis[7'-(4"-ethynylphenoxy)-2',5'-dioxaheptyl]pyridine was carried out using a rhodium complex catalyst to yield the polyphenylacetylene with an aza-crown ether cavity. The obtained polymer showed binding ability for metal cations, which was particularly high for Ag^+ . Copyright © 1996 Elsevier Science Ltd.

(Keywords: cyclopolymerization; α , ω -diacetylene; polyacetylene)

Introduction

Conjugated polymers with a crown ether are expected to exhibit new functional properties based on the electrical conductivity of the main-chain¹ and the cation-binding ability of the crown cavity. For example, poly(thiophene)s² and poly(pyrrole)s³ attached to crown ethers have been synthesized and the conducting properties were reported. Recently, we reported that two different types of poly(phenylacetylene)s with crown cavities were synthesized by the polymerization of 4'-ethynylbenzo-15-crown-5⁴ and the cyclopolymerization of 1,14-bis(4'-ethynylphenoxy)-3,6,9,12-tetraoxatetradecane⁵, respectively. They exhibited binding selectivity for alkali-metal cations, and an increase in electrical conductivity was produced by doping with I₂, with values in the semiconductor range⁴.

We reported the synthesis of polymers with crown ether, thia-crown ether, cryptand, hemispherand, and crown lactone units using the cyclopolymerization of bifunctional monomers, such as α, ω -divinyl ether^o, α, ω -diepoxide⁷, α, ω -diepisulfide⁸, and allyloxyphenyl acrylate⁹. They showed binding characteristics toward appropriate metal cations, which depended on their ring sizes and the nature of the donor atoms. We have continued to expand the scope of the cyclopolymerization method in terms of the kind of polymerizable groups and macrocyclic units. Therefore, the synthesis of polymeric aza-crown ether using the cyclopolymerization method is interesting along with their cation-binding properties. Here we report the preparation of polyphenylacetylene with an aza-crown cavity 2 by the cyclopolymerization of 2,6-bis[7'-(4"-ethynylphenoxy)-2',5'-dioxaheptyl]pyridine (1) using a rhodium complex catalyst. In addition, 2 is found to exhibit a remarkably high binding ability for Ag^+ (Scheme 1).

Experimental

Monomer. The synthesis of 2,6-bis[7'-(4"-ethynylphenoxy)-2', 5'-dioxaheptyl]pyridine (1) and intermediary compounds are outlined in Scheme 2. 5-(4'-Iodophenoxy)-3-oxapentanol (4) was prepared from 4-iodophenol and 5-chloro-3-oxapentyl tetrahyropyranyl ether (3), followed by the cleavage of the tetrahydropyranyl (THP) ether linkage. For the cross-coupling of diiodo compound 5 and trimethylsilylacetylene with bis(triphenylphosphine)palladium(II) chloride and copper (I) iodide, piperidine was used as the basic solvent. The deprotection of the disilyl compound smoothly progressed with Na₂CO₃ in methanol to give 1 (yield, 69%) from 5) as a yellow oil ¹H n.m.r. (CDCl₃) δ 3.00 (s, 2H, \equiv CH), 3.73–3.79 (m, 8H, OCH₂CH₂), 3.85–3.89 (m, 4H, PhOCH₂CH₂), 4.10-4.15 (m, 4H, PhOCH₂), 4.67 (s, 4H, PyCH₂), 6.83-6.87 (m, 4H, PhH_{ortho}), 7.35 (d, J =7.59 Hz, 2H, 3,5-Py-H), 7.38-7.42 (m, 4H, Ph- H_{meta}), 7.64 (t, J = 7.59 Hz, 4-Py-H). Anal. Calcd for C₃₁H₃₃NO₆: C, 72.21; H, 6.45; N, 2.72. Found: C, 71.18; H, 6.72; N, 2.74.

Cyclopolymerization. A typical polymerization procedure is as follows: To a solution of (bicyclo[2.2.1]hepta-2,5-diene)rhodium(I) chloride dimer ([Rh(bhd)- Cl_{2} (2 mg, 4.5×10^{-3} mmol) in chloroform (0.3 ml), Et₂NH (33 mg, 0.45 mmol) was added under nitrogen. The mixture was warmed at 30°C for 30 min. To a solution of 1 (232 mg, 0.45 mmol) in chloroform (14.6 ml), the catalyst solution was added using a syringe with stirring at 30°C under nitrogen. After stirring for 12h, the polymerization was quenched by adding a small amount of acetic acid, and then the mixture was concentrated under reduced pressure. The residue was poured into the large amount of methanol. The precipitate was filtered and then purified by

^{*} To whom correspondence should be addressed

reprecipitation from chloroform/methanol several times to yield the polymer (128 mg, yield 55%).

Extraction experiment. The extraction of metal cation picrates was carried out using a procedure similar to that developed by Pedersen.¹⁰. A solution of polymer in chloroform ([aza-crown ether units] = $7 \times 10^{-4} \text{ mol } 1^{-1}$) was vigorously shaken in a culture tube with an aqueous solution of alkali hydroxide and picric acid ([picric acid] = $7 \times 10^{-5} \text{ mol } 1^{-1}$ and [metal ion] = $0.01 \text{ mol } 1^{-1}$). After separating the resulting two phases, the alkali picrate extracted into the chloroform was determined indirectly by measuring the absorbance of the picrate in the aqueous phase at 354 nm using a u.v.-visible spectrophotometer.

Results and discussion

Table 1 lists the results of the polymerization of 1. [Rh(bhd)Cl]₂ did not exhibit catalytic activity but was combined with an appropriate amine as a cocatalyst to produce the polymers. The obtained polymers were yellow powders and were soluble in chloroform and dichloromethane except that substantial amounts of organic-solvent insoluble polymers were obtained for the polymerization with Et₂NH in toluene. The yields and the number-average molecular weights (M_n s) for the polymerizations with Et₂NH were higher than those with Et₃N. The condition with Et₂NH in CHCl₃ was most suitable. The M_n values ranged from 5300 to 16000, corresponding to the number average degree of polymerization of 10.3 to 31.0.

Table 1Cyclopolymerization of 2,6-bis[7'-(4"-ethynylphenoxy)-2',5'-dioxaheptyl]pyridine(1)using(bicyclo[2.2.1]hepta-2,5-diene)rho-dium(1)chloride dimer([Rh(bhd)Cl]_2)^a

Amine	Solvent	Yield ^{b} (%)	$M_{\rm n}(M_{\rm W}/M_{\rm n})^c$	Extent of cyclization ^d
	QUQ	0		
	CHCl ₃	0		
Et ₃ N	CHCl ₃	31 (trace)	5 300 (5.0)	0.99
Et ₂ NH	CHCl ₃	55	16000 (5.4)	0.99
Et ₂ NH	THF	Trace	12000 (4.1)	0.89
Et_2NH	Toluene	Trace (47)	11 000 (3.4)	0.92
-		()		

^{*a*} [1] = 0.03 mol l⁻¹; [1]/[[Rh(bhd)Cl]₂] = 100; [amine]/[[Rh(bhd)-Cl]₂] = 100; time, 12 h; temp., 30°C ^{*b*} The yields of solvent-insoluble polymers in parentheses

"The yields of solvent-insoluble polymers in parentheses Measured in THF by g.p.c. using polystyrene as standards

 d^{d} Determined by ¹H n.m.r. spectra

Determined by Hn.m.r. spectra

Figure 1 $^{-1}$ H n.m.r. spectra of aza-crowned polymer 2 (a) and that with AgClO₄ (b) in DMSO- d_6

For the polymerization of 1, $[Rh(bhd)Cl]_2$ was found to be a suitable polymerization catalyst, although WCl₆ and MoCl₅, which are excellent catalysts for the polymerization of substituted acetylenes,¹¹ did not exhibit catalytic activity. This was very similar to the results for the polymerizations of 4'-ethynylbenzo-15-crown-5⁴ and 1,14-bis(4'-ethynylphenoxy)-3,6,9,12tetraoxatetradecane⁵.

Figure 1 shows the ¹H n.m.r. spectrum of the polymer obtained with $[Rh(bhd)Cl]_2/Et_2NH$. The characteristic absorption at 3.0 ppm due to the ethynyl proton has been remarkably diminished together with the appearance of an absorption at 5.5–5.9 ppm due to the proton in the conjugated main chain. The extent of cyclization, which was determined from the relative peak areas of the pyridyl (7.5–7.8 ppm) and ethynyl (3.0 ppm) protons in the ¹H n.m.r. spectra, was from 0.89 to 0.99. This means that the resulting polymer consisted of cyclic constitutional repeating units as the main structure with a small amount of pendant ethynyl groups, i.e., polyphenyl-acetylene with an aza-crown cavity, **2**.

The vinylic absorption due to the main-chain protons for **2** was broader than those for poly(phenylacetylene)s synthesized using rhodium complex catalysts¹². In addition, we reported that the n.m.r. spectra of the polyphenylacetylenes with crown cavities showed sharp signals due to the main-chain $atoms^{4,5}$. The lower regularity of the main-chain structure for **2** should be caused by the pyridyl unit in **1**, but this needs to be further studied.

The cation-binding properties of polymer 2 were estimated by the liquid-liquid extraction method using picrates of Fe^{2+} , Zn^{2+} , Cd^{2+} , Pb^{2+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Ag^+ and Hg^{2+} . The extraction experiment was carried out with [aza-crown units in 2]/[metal picrate] = 10. Although the pyridyl unit in the polymers participates with the acid-base reaction, picric acid was not extracted into the organic solution of the polymers in the absence of the metal cation. The binding ability was low for Fe^{24} (6.2%), Zn^{2+} (3.3%), and Cd^{2+} (4.0%) and somewhat high for Pb^{2+} (25.4%), Co^{2+} (12.2%), Ni^{2+} (10.4%), Cu^{2+} (21.7%) and Hg²⁺ (14.1%). Polymer 2 exhibited remarkably high binding performance for Ag⁺, attaining a 98.6% yield. In addition, a yield of 49.9% was found even for [aza-crown cavity units in 2]/[metal picrate] = 2.Monomer 1 gave yields of 41.8 and 11.4% under the corresponding conditions. Polymer 2, thus, was specific for binding with Ag^+ . The complex between 2 and Ag^+ was confirmed by the ¹H n.m.r. measurement. As seen in Figure 1, the absorption at 3.0-4.2 ppm due to the methylene protons of the oxyethylene units was split into two parts. Moreover, downfield shifts were observed for the methylene (4.3-4.7 ppm) and methine (7.1-7.5 and)7.5–7.9 ppm) proton signals relating to the pyridyl units after host-guest complexation. This means that the azacrown moiety in 2 strongly formed a complex with Ag^+ .

The geometric structure of polymer main-chain *cis* and *trans* forms, should affect the radius of aza-crown cavity. However this is not clear, so we cannot discuss the effect of conjugated main-chain structure on the cationbinding property. Further studies are underway to investigate the ionic and electrical conductivity and the electrochemical properties of 2 when it forms a complex with an appropriate cationic guest.

In summary, we synthesized a novel polymeric azacrown ether using the cyclopolymerization method, i.e., polyphenylacetylene with an aza-crown ether cavity **2** was prepared from the cyclopolymerization of α, ω diacetylene **1** with pyridyl unit using a rhodium complex catalyst. Polymer 2 showed binding ability for metal cations, which was particularly high for Ag^+ . This binding property was specific among the polymers with various macrocyclic units prepared using the cyclopolymerization method.

References

- 1 Chien, J. 'Polyacetylen', Academic Press, Orland, FL, 1984
- 2 Le Moigne, J., Hilbere, A. and Strazielle, C. *Macromolecules* 1992, **25**, 6705
- 3 Matsunami, S., Kakuchi, T., Yokota, K. and Ishii, F. Rep. Prog. Polym. Phys. Jpn 1994, 37, 517
- 4 Kakuchi, T., Matsunami, S., Kamimura, H., Ishii, F., Uesaka, T. and Yokota, K. J. Polym. Sci., Part A: Polym. Chem. 1995, 33, 1431
- 5 Kakuchi, T., Kamimura, H., Matsunami, S. and Yokota, K. Macromolecules 1995, 28, 658
- (a) Kakuchi, T., Haba, O. and Yokota, K. Macromolecules 1992, 25, 4854. (b) Kakuchi, T., Aoki, K., Haba, O. and Yokota, K. Polym. J. 1993, 25, 839. (c) Yokota, K., Matsumura, M., Yamaguchi, K. and Takada, Y. Makromol. Chem., Rapid Commun. 1983, 4, 721. (d) Yokota, K., Kakuchi, T., Yamanaka, M. and Takada, Y. Makromol. Chem., Rapid Commun. 1986, 7, 633. (e) Kakuchi, T., Sasaki, H. and Yokota, S. Makromol. Chem. 1988, 189, 1279. (f) Kakuchi, T., Takaoka, T. and Yokota, K. Makromol. Chem. 1988, 189, 1279. (f) Kakuchi, T., Takaoka, T. and Yokota, K. Makromol. Chem. 1988, 189, 2007. (g) Yokota, K., Kakuchi, T., Sasaki, H. and Ohmori, H. Makromol. Chem. 1989, 190, 1269. (h) Kakuchi, T., Takaoka, T. and Yokota, K. Makromol. Chem. 1989, 190, 2449. (i) Kakuchi, T., Haba, O. and Yokota, K. Makromol. Chem. 1991, 192, 1601. (j) Yokota, K., Kakuchi, T., Yamamoto, T., Hasegawa, T. and Haba, O. Makromol. Chem. 1992, 193, 1805
- (a) Hashimoto, H., Kakuchi, T., Haba, O. and Yokota, K. Macromolecules 1992, 25, 1828. (b) Kakuchi, T., Hashimoto, H., Harada, Y., Satoh, T. and Yokota, K. J. Macromol. Sci., Pure Appl. Chem. 1994, A31, 751. (c) Yokota, K., Hashimoto, H., Kakuchi, T. and Takada, Y. Makromol. Chem., Rapid Commun. 1984, 5, 115. (d) Hashimoto, H., Kakuchi, T. and Yokota, K. J. Org. Chem. 1991, 56, 6470. (e) Kakuchi, T., Harada, Y., Satoh, T., Yokota, K. and Hashimoto, H. Polymer 1994, 35, 204
- 8 Yokota, K., Hashimoto, H., Kakuchi, T. and Takada, T. Makromol. Chem., Rapid Commuun. 1984, 5, 767
- 9 Yokota, K., Hirayama, N. and Takada, T. Polym. J. 1975, 7, 729
- 10 Pedersen, C. J. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1968, 27, 1305
- (a) Masuda, T. and Higashimura, T. Adv. Polym. Sci. 1987, 81, 121.
 (b) Masuda, T., Kawasaki, M., Okano, Y. and Higashimura, T. Polym. J. 1982, 14, 371
- (a) Furlani, A., Licoccia, S. and Russo, M. V. J. Polym. Sci., Polym. Chem. Edn 1986, 24, 991. (b) Furlani, A., Napoletano, C., Russo, M. V. and Fest, W. J. Polym. Bull. 1986, 16, 311.
 (c) Furlani, A., Napoletano, C., Russo, M. V., Camus, A. and Marsich, N. J. Polym. Sci., Polym. Chem. Edn 1989, 27, 75.
 (d) Tabata, M., Yang, W., Yokota, K. and Shoma, J. Polym. J. 1990, 22, 1105. (e) Tabata, M., Yang, W. and Yokota, K. Polym. J. 1991, 23, 1135